Abstract

The weighted minimum mean square error (WMMSE) algorithm was proposed to provide a locally optimum solution to the otherwise NP-hard weighted sum rate maximization beamforming problem, but it can still be prohibitively complex for real-time implementation. With the success of deep unfolding in trading off complexity and performance, we propose to apply deep unfolding to the WMMSE algorithm. With respect to traditional end-to-end learning, deep unfolding incorporates expert knowledge, with the benefits of immediate and well-grounded architecture selection, fewer trainable parameters, and better explainability. However, the classical formulation of the WMMSE algorithm given by Shi et al. is not amenable for deep unfolding due to matrix inversions, eigendecompositions, and bisection searches. Therefore, we present an alternative formulation that circumvents these operations. By means of simulations, we show that the deep unfolded WMMSE algorithm performs on par with the original WMMSE algorithm, at a lower computational load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call