Abstract
Most of the current generation expert systems use knowledge which does not represent a deep understanding of the domain, but is instead a collection of “pattern → action” rules, which correspond to the problem-solving heuristics of the expert in the domain. There has thus been some debate in the field about the need for and role of “deep” knowledge in the design of expert systems. It is often argued that this underlying deep knowledge will enable an expert system to solve hard problems. In this paper we consider diagnostic expert systems and argue that given a body of underlying knowledge that is relevant to diagnostic reasoning in a medical domain, it is possible to create a diagnostic problem-solving structure which has all the aspects of the underlying knowledge needed for diagnostic reasoning “compiled” into it. It is argued this compiled structure can solve all the diagnostic problems in its scope efficiently, without any need to access the underlying structures. We illustrate such a diagnostic structure by reference to our medical system MDX. We also analyze the use of these knowledge structures in providing explanations of diagnostic reasoning.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.