Abstract
We developed a deep generative model-based variational free energy approach to the equations of state of dense hydrogen. We employ a normalizing flow network to model the proton Boltzmann distribution and a fermionic neural network to model the electron wave function at given proton positions. By jointly optimizing the two neural networks we reached a comparable variational free energy to the previous coupled electron-ion MonteCarlo calculation. The predicted equation of state of dense hydrogen under planetary conditions is denser than the findings of abinitio molecular dynamics calculation and empirical chemical model. Moreover, direct access to the entropy and free energy of dense hydrogen opens new opportunities in planetary modeling and high-pressure physics research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.