Abstract
Spike-timing-dependent plasticity (STDP) is an unsupervised learning mechanism for spiking neural networks that has received significant attention from the neuromorphic hardware community. However, scaling such local learning techniques to deeper networks and large-scale tasks has remained elusive. In this work, we investigate a Deep-STDP framework where a rate-based convolutional network, that can be deployed in a neuromorphic setting, is trained in tandem with pseudo-labels generated by the STDP clustering process on the network outputs. We achieve 24.56% higher accuracy and 3.5 × faster convergence speed at iso-accuracy on a 10-class subset of the Tiny ImageNet dataset in contrast to a k-means clustering approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.