Abstract

A realistic inflow boundary condition is essential for successful simulation of the developing turbulent boundary layer or channel flows. In the present work, we applied generative adversarial networks (GANs), a representative of unsupervised learning, to generate an inlet boundary condition of turbulent channel flow. Upon learning the two-dimensional spatial structure of turbulence using data obtained from direct numerical simulation (DNS) of turbulent channel flow, the GAN could generate instantaneous flow fields that are statistically similar to those of DNS. After learning data at only three Reynolds numbers, the GAN could produce fields at various Reynolds numbers within a certain range without additional simulation. Eventually, through a combination of the GAN and a recurrent neural network (RNN), we developed a novel model (RNN-GAN) that could generate time-varying fully developed flow for a long time. The spatiotemporal correlations of the generated flow are in good agreement with those of the DNS. This proves the usefulness of unsupervised learning in the generation of synthetic turbulence fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.