Abstract
Image compression is a need that arises in many circumstances. Unfortunately, whenever a lossy compression algorithm is used, artifacts will manifest. Image artifacts, caused by compression tend to eliminate higher frequency details and, in certain cases, may add noise or small image structures. There are two main drawbacks of this phenomenon. First, images appear much less pleasant to the human eye. Second, computer vision algorithms, such as object detectors, may be hindered and their performance reduced. Removing such artifacts means recovering the original image from a perturbed version of it. This means that one ideally should invert the compression process through a complicated nonlinear image transformation. We propose an image transformation approach based on a feedforward fully convolutional residual network model. We show that this model can be optimized either traditionally, directly optimizing an image similarity loss (SSIM), or using a generative adversarial approach (GAN). Our GAN is able to produce images with more photorealistic details than SSIM-based networks. We describe a novel training procedure based on subpatches and devise a novel testing protocol to evaluate restored images quantitatively. We show that our approach can be used as a preprocessing step for different computer vision tasks in case images are degraded by compression to a point that state-of-the art algorithms fail. In this case, our GAN-based approach obtains better performance than MSE or SSIM trained networks. Different from previously proposed approaches, we are able to remove artifacts generated at any QF by inferring the image quality directly from data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.