Abstract

Iraqi petroleum refineries produce large quantities of base lubricating oils (lube oils). Managing the influence of nano-additives on the lube oil nanofluids is required deep understanding to explain the resulting new specifications of produced nano-lubricants. The present study investigated the effect of Al2O3 NPs addition on the thermal properties of lube oil stock-60. Different mass additions of 0.25, 0.65, 1.05, 1.45, and 1.85 wt.% of Al2O3 NPs at operating temperatures of 20-50°C were evaluated. Also, the thermal conductivity coefficient of the prepared nanofluid was studied at the full range of the experimental temperatures (20-50°C). It was noted that the addition of Al2O3 NPs improved the thermal properties of the prepared nano-lubricant due to the high thermal conductivity of the added Al2O3 NPs. Moreover, the greatest improvement in the thermal conductivity of modified nano-lubricating oil was 13.02% at added Al2O3 mass fraction of 1.85%. The results indicated that the viscosity index of the prepared nano-lubricant was improved dramatically with Al2O3 NPs addition increase at measured standard temperatures of 40 and 100°C. The viscosity index of lubricant nanofluid is increased up to 2.46% at a weight fraction of 1.85%. The flashpoint increased by 1.33, 3.54, 5.75, 7.52, and 9.73% for mass fraction of 0.25, 0.65, 1.05, 1.45, and 1.85 wt.%, respectively. Furthermore, the highest flashpoint value was 248oC of prepared nanofluid lube oil with 1.85 wt.% of Al2O3 NPs. Finally, the produced nano-lubricating oil has high operating quality with economic feasibility. Furthermore, an accurate correlation for predicting the viscosity of both types of nano-lubricants was provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.