Abstract

Going from natural language directions to fully specified executable plans for household robots involves a challenging variety of reasoning steps. In this paper, a processing pipeline to tackle these steps for natural language directions is proposed and implemented. It uses the ontological Socio-physical Model of Activities (SOMA) as a common interface between its components. The pipeline includes a natural language parser and a module for natural language grounding. Several reasoning steps formulate simulation plans, in which robot actions are guided by data gathered using human computation. As a last step, the pipeline simulates the given natural language direction inside a virtual environment. The major advantage of employing an overarching ontological framework is that its asserted facts can be stored alongside the semantics of directions, contextual knowledge, and annotated activity models in one central knowledge base. This allows for a unified and efficient knowledge retrieval across all pipeline components, providing flexibility and reasoning capabilities as symbolic knowledge is combined with annotated sub-symbolic models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call