Abstract
<p>Global mean sea-level rise and its acceleration are projected to aggravate coastal erosion over the 21st century, which constitutes a major challenge for coastal adaptation. Projections of shoreline retreat are highly uncertain, however, namely due to deeply uncertain mean sea-level projections and the absence of consensus on a coastal impact model. An improved understanding and a better quantification of these sources of deep uncertainty are hence required to improve coastal risk management and inform adaptation decisions. In this work we present and apply a new extra-probabilistic framework to develop shoreline change projections of sandy coasts that allows considering intrinsic (or aleatory) and knowledge-based (or epistemic) uncertainties exhaustively and transparently. This framework builds upon an empirical shoreline change model to which we ascribe possibility functions to represent deeply uncertain variables. The model is applied to two local sites in Aquitaine (France) and Castellón (Spain). First, we validate the framework against historical shoreline observations and then develop shoreline change projections that account for possible (although unlikely) low-end and high-end mean sea-level scenarios. Our high-end projections show for instance that shoreline retreats of up to 200m in Aquitaine and 130m in Castellón are plausible by 2100, while low-end projections revealed that 58m and 37m modest shoreline retreats, respectively, are also plausible. Such extended intervals of possible future shoreline changes reflect an ambiguity in the probabilistic description of shoreline change projections, which could be substantially reduced by better constraining SLR projections and improving coastal impact models. We found for instance that if mean sea-level by 2100 does not exceed 1m, the ambiguity can be reduced by more than 50 %. This could be achieved through an ambitious climate mitigation policy and improved knowledge on ice-sheets. </p>
Highlights
Global mean sea level rose over the period 2006–2015 at a rate more than 2 times larger than over the whole 20th century and is projected to continue rising for the centuries to come (Oppenheimer et al, 2019)
We validate the framework against historical shoreline observations and develop shoreline change projections that account for possible low-end and high-end mean sea level scenarios
Given a certain amount of sea level rise, the response of the probabilistic coastline recession (PCR) model is less erosive than the Bruun rule by 1 order of magnitude
Summary
Global mean sea level rose over the period 2006–2015 at a rate more than 2 times larger than over the whole 20th century and is projected to continue rising for the centuries to come (Oppenheimer et al, 2019). Recent analysis of satellite-derived shoreline changes has revealed that a quarter of the world’s sandy beaches are eroding (Luijendijk et al, 2018) and that the overall surface of eroded land recorded over the period 1984– 2015 (about 28 000 km2) is 2 times larger than the surface of gained land (Mentaschi et al, 2018) This situation is projected to worsen with climate change (Ranasinghe, 2016; Vousdoukas et al, 2020). An improved understanding and a better quantification of these sources of uncertainty are required to improve coastal risk
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.