Abstract

Silica-based photonic crystal fibre has proven highly successful for supercontinuum generation, with smooth and flat spectral power densities. However, fused silica glass suffers from strong material absorption in the mid-infrared (>2,500 nm), as well as ultraviolet-related optical damage (solarization), which limits performance and lifetime in the ultraviolet (<380 nm). Supercontinuum generation in silica photonic crystal fibre is therefore only possible between these limits. A number of alternative glasses have been used to extend the mid-infrared performance, including chalcogenides, fluorides and heavy-metal oxides, but none has extended the ultraviolet performance. Here, we describe the successful fabrication (using the stack-and-draw technique) of a ZBLAN photonic crystal fibre with a high air-filling fraction, a small solid core, nanoscale features and near-perfect structure. We also report its use in the generation of ultrabroadband, long-term stable, supercontinua spanning more than three octaves in the spectral range 200–2,500 nm. A low-loss ZBLAN micro-structured fibre is used to generate a supercontinuum spanning from the UV to the mid-IR (200 nm–2,500 nm). The material has high resistance even after extended operation and can withstand large spectral power densities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call