Abstract

The localized surface plasmon resonance properties of Al and Alcore/Al2O3shell nanosphere dimers with Al and Al core nanosphere radii of 20 nm and Al2O3 shell of 2 nm in the deep-ultraviolet region have been studied using the finite difference time domain method. The extinction spectra and the electric field distribution profiles of the two dimers for various gap distances between two individual nanospheres are compared with those of the corresponding monomers to reveal the extent of plasmon coupling. It is found that with the interparticle distance decreasing, a strong plasmon coupling between two Al or Alcore/Al2O3shell nanospheres is observed accompanied by a significant red shift in the extinction spectra at the parallel polarization direction of the incident light related to the dimer axis, while for the case of the perpendicular polarization direction, a weak plasmon coupling arises characterized by a slight blue shift in the extinction spectra. The electric field distribution profiles show that benefiting from the dielectric Al2O3 shell, the gap distance of Alcore/Al2O3shell nanosphere dimers can be tailored to < 1 nm scale and results in a very high electric field enhancement. The estimated surface-enhanced Raman scattering enhancement factors suggests that the Alcore/Al2O3shell nanosphere dimers with the gap of < 1 nm gave rise to an enhancement as high as 8.1 × 107 for interparticle gap = 0.5 nm. Our studies reveal that the Alcore/Al2O3shell nanosphere dimers may be promising substrates for surface-enhanced spectroscopy in the deep-ultraviolet region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.