Abstract

Although graphene has been the primary material of interest recently for spontaneous emission engineering through the Purcell effect, it features isotropic and thickness-independent optical properties. In contrast, the optical properties of black Phosphorus (BP) are in-plane anisotropic; which supports plasmonic modes and are thickness-dependent, offering an additional degree of freedom for control. Here we investigate how the anisotropy and thickness of BP affect spontaneous emission from a Hydrogenic emitter. We find that the spontaneous emission enhancement rate i.e. Purcell factor (PF) depends on emitter orientation, and PF at a particular frequency and distance can be controlled by BP thickness. At lower frequencies, PF increases with increasing thickness due to infrared (IR) plasmons, which then enhances visible and UV far-field spectra, even at energies greater than 10 eV. By leveraging the thickness and distance-dependent PF, deep UV emission can be switched between 103 nm or 122 nm wavelength from a Hydrogenic emitter. Additionally, we find that doping can significantly tune the PF near BP and this alteration depends on the thickness of the BP. Our work shows that BP is a promising platform for studying strong plasmon-induced light-matter interactions tunable by varying doping levels, emitter orientation, and thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.