Abstract
Deep convolutional neural networks have achieved state-of-the-art performance for the removal of atmospheric obscuration. However, most relevant studies have focused on eliminating the effects of atmospheric obscuration but not on the glare in images caused by reflected sunlight. On the basis of a glare image formation model, we propose a deep trident decomposition network with a large-scale sun glare image dataset for glare removal from single images. Specifically, the proposed network is designed and implemented with a trident decomposition module for decomposing an input glare image into occlusion, foreground, and coarse glare-free images by exploring background features from spatial locations. Moreover, a residual refinement module is adopted to refine the coarse glare-free image into fine glare-free image by learning the residuals from features of multiscale receptive field. The experimental results indicated that the proposed network significantly outperforms state-of-the-art atmospheric obscuration removal networks on the built dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.