Abstract

Tensor decomposition is one of the most effective techniques for multi-criteria recommendations. However, it suffers from data sparsity when dealing with three-dimensional (3D) user-item-criterion ratings. To mitigate this issue, we consider effectively incorporating the side information and cross-domain knowledge in tensor decomposition. A deep transfer tensor decomposition (DTTD) method is proposed by integrating deep structure and Tucker decomposition, where an orthogonal constrained stacked denoising autoencoder (OC-SDAE) is proposed for alleviating the scale variation in learning effective latent representation, and the side information is incorporated as a compensation for tensor sparsity. Tucker decomposition generates private users and items' latent factors to connect with OC-SDAEs and creates a common core tensor to bridge different domains. A cross-domain alignment algorithm (CDAA) is proposed to solve the rotation issue between two core tensors in source and target domain. To the best of our knowledge, this is the first work in Tucker decomposition based recommendations to use deep structure to incorporate the side information and cross-domain knowledge. Experiments show that DTTD outperforms state-of-the-art related works.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.