Abstract

This study aimed to propose a deep transfer learning framework for histopathological image analysis by using convolutional neural networks (CNNs) with visualization schemes, and to evaluate its usage for automated and interpretable diagnosis of cervical cancer. First, in order to examine the potential of the transfer learning for classifying cervix histopathological images, we pre-trained three state-of-the-art CNN architectures on large-size natural image datasets and then fine-tuned them on small-size histopathological datasets. Second, we investigated the impact of three learning strategies on classification accuracy. Third, we visualized both the multiple-layer convolutional kernels of CNNs and the regions of interest so as to increase the clinical interpretability of the networks. Our method was evaluated on a database of 4993 cervical histological images (2503 benign and 2490 malignant). The experimental results demonstrated that our method achieved 95.88% sensitivity, 98.93% specificity, 97.42% accuracy, 94.81% Youden's index and 99.71% area under the receiver operating characteristic curve. Our method can reduce the cognitive burden on pathologists for cervical disease classification and improve their diagnostic efficiency and accuracy. It may be potentially used in clinical routine for histopathological diagnosis of cervical cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.