Abstract

Glucose transporter-1 (GLUT-1) expression level is a biomarker of tumour hypoxia condition in immunohistochemistry (IHC)-stained images. Thus, the GLUT-1 scoring is a routine procedure currently employed for predicting tumour hypoxia markers in clinical practice. However, visual assessment of GLUT-1 scores is subjective and consequently prone to inter-pathologist variability. Therefore, this study proposes an automated method for assessing GLUT-1 scores in IHC colorectal carcinoma images. For this purpose, we leverage deep transfer learning methodologies for evaluating the performance of six different pre-trained convolutional neural network (CNN) architectures: AlexNet, VGG16, GoogleNet, ResNet50, DenseNet-201 and ShuffleNet. The target CNNs are fine-tuned as classifiers or adapted as feature extractors with support vector machine (SVM) to classify GLUT-1 scores in IHC images. Our experimental results show that the winning model is the trained SVM classifier on the extracted deep features fusion Feat-Concat from DenseNet201, ResNet50 and GoogLeNet extractors. It yields the highest prediction accuracy of 98.86%, thus outperforming the other classifiers on our dataset. We also conclude, from comparing the methodologies, that the off-the-shelf feature extraction is better than the fine-tuning model in terms of time and resources required for training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.