Abstract

BackgroundXenopus has served as a valuable model system for biomedical research over the past decades. Notably, ADAR was first detected in frog oocytes and embryos as an activity that unwinds RNA duplexes. However, the scope of A-to-I RNA editing by the ADAR enzymes in Xenopus remains underexplored.ResultsHere, we identify millions of editing events in Xenopus with high accuracy and systematically map the editome across developmental stages, adult organs, and species. We report diverse spatiotemporal patterns of editing with deamination activity highest in early embryogenesis before zygotic genome activation and in the ovary. Strikingly, editing events are poorly conserved across different Xenopus species. Even sites that are detected in both X. laevis and X. tropicalis show largely divergent editing levels or developmental profiles. In protein-coding regions, only a small subset of sites that are found mostly in the brain are well conserved between frogs and mammals.ConclusionsCollectively, our work provides fresh insights into ADAR activity in vertebrates and suggest that species-specific editing may play a role in each animal’s unique physiology or environmental adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.