Abstract

Six Deep-Tow magnetic profiles across the axis of the East Pacific Rise [EPR] in two small areas between 19°25′ and 20°10′S were collected during the 1983 Protea 1 cruise of the R/V Melville. These near-bottom profiles are of extremely high resolution allowing the interpretation of very short wavelength features. We have inverted the magnetic field data to determine the rock magnetization distribution near the axis of this ultrafast speading center (162 mm yr-1). The solutions reveal large amplitude (up to 35 A m-1) short wavelength (1–3 km) variations in magnetization. Specifically all crossings show a narrow (0.5 to 1.5 km) low in magnetization superimposed on a broader (2.5 to 4 km) high directly over the ridge axis. Four profiles in the northern area (19°25′ to 19°33′S) also show symmetrical near-axis (within 4 km) lows which are remarkably continuous along strike. Explanations for the short-wavelength variations are discussed which fall into the following categories: (1) variations in the thickness of the magnetized layer, (2) variations in rock chemistry (e.g. alteration due to hydrothermal activity), and (3) paleofield intensity variations. None of the mechanisms discussed alone adequately explain the observed phenomena in the study area or on a world-wide scale. Further sampling and high resolution surveying will be required in order to accurately determine the relative importance of the mechanisms discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call