Abstract
This paper presents the Deep-Time Neural Network (DTNN), an efficient and novel deep-learning approach for solving partial differential equations (PDEs). DTNN leverages the power of deep neural networks to approximate the solution for a class of quasi-linear parabolic PDEs. We demonstrate that DTNN significantly reduces the computational cost and speeds up the training process compared to other models in the literature. The results of our study indicate that DTNN architecture is promising for the fast and accurate solution of time-dependent PDEs in various scientific and engineering applications. The DTNN architecture addresses the pressing need for enhanced time considerations in the deeper layers of Artificial Neural Networks (ANNs), thereby improving convergence time for high-dimensional PDE solutions. This is achieved by integrating time into the hidden layers of the DTNN, demonstrating a marked improvement over existing ANN-based solutions regarding efficiency and speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.