Abstract

The deep time-delay reservoir computing concept utilizes unidirectionally connected systems with time-delays for supervised learning. We present how the dynamical properties of a deep Ikeda-based reservoir are related to its memory capacity (MC) and how that can be used for optimization. In particular, we analyze bifurcations of the corresponding autonomous system and compute conditional Lyapunov exponents, which measure generalized synchronization between the input and the layer dynamics. We show how the MC is related to the systems' distance to bifurcations or magnitude of the conditional Lyapunov exponent. The interplay of different dynamical regimes leads to an adjustable distribution between the linear and nonlinear MC. Furthermore, numerical simulations show resonances between the clock cycle and delays of the layers in all degrees of MC. Contrary to MC losses in single-layer reservoirs, these resonances can boost separate degrees of MC and can be used, e.g., to design a system with maximum linear MC. Accordingly, we present two configurations that empower either high nonlinear MC or long time linear MC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.