Abstract

Tensor spectral clustering (TSC) is an emerging approach that explores multi-wise similarities to boost learning. However, two key challenges have yet to be well addressed in the existing TSC methods: (1) The construction and storage of high-order affinity tensors to encode the multi-wise similarities are memory-intensive and hampers their applicability, and (2) they mostly employ a two-stage approach that integrates multiple affinity tensors of different orders to learn a consensus tensor spectral embedding, thus often leading to a suboptimal clustering result. To this end, this paper proposes a tensor spectral clustering network (TSC-Net) to achieve one-stage learning of a consensus tensor spectral embedding, while reducing the memory cost. TSC-Net employs a deep neural network that learns to map the input samples to the consensus tensor spectral embedding, guided by a TSC objective with multiple affinity tensors. It uses stochastic optimization to calculate a small part of the affinity tensors, thereby avoiding loading the whole affinity tensors for computation, thus significantly reducing the memory cost. Through using an ensemble of multiple affinity tensors, the TSC can dramatically improve clustering performance. Empirical studies on benchmark datasets demonstrate that TSC-Net outperforms the recent baseline methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.