Abstract

The electroencephalogram (EEG) based motor imagery (MI) signal classification, also known as motion recognition, is a highly popular area of research due to its applications in robotics, gaming, and medical fields. However, the problem is ill-posed as these signals are non-stationary and noisy. Recently, a lot of efforts have been made to improve MI signal classification using a combination of signal decomposition and machine learning techniques but they fail to perform adequately on large multi-class datasets. Previously, researchers have implemented long short-term memory (LSTM), which is capable of learning the time-series information, on the MI-EEG dataset for motion recognition. However, it can not model very long-term dependencies present in the motion recognition data. With the advent of transformer networks in natural language processing (NLP), the long-term dependency issue has been widely addressed. Motivated by the success of transformer algorithms, in this article, we propose a transformer-based deep learning neural network architecture that performs motion recognition on the raw BCI competition III IVa and IV 2a datasets. The validation results show that the proposed method achieves superior performance than the existing state-of-the-art methods. The proposed method produces classification accuracy of 99.7% and 84% on the binary class and the multi-class datasets, respectively. Further, the performance of the proposed transformer-based model is also compared with LSTM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call