Abstract

Several deep supervised hashing techniques have been proposed to allow for extracting compact and efficient neural network representations for various tasks. However, many deep supervised hashing techniques ignore several information-theoretic aspects of the process of information retrieval, often leading to sub-optimal results. In this paper, we propose an efficient deep supervised hashing algorithm that optimizes the learned compact codes using an information-theoretic measure, the Quadratic Mutual Information (QMI). The proposed method is adapted to the needs of efficient image hashing and information retrieval leading to a novel information-theoretic measure, the Quadratic Spherical Mutual Information (QSMI). Apart from demonstrating the effectiveness of the proposed method under different scenarios and outperforming existing state-of-the-art image hashing techniques, this paper provides a structured way to model the process of information retrieval and develop novel methods adapted to the needs of different applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.