Abstract
Versatile mesenchymal stem cells (MSCs) play an important role in tissue engineering and regenerative medicine. MSCs in 3D spheroid have shown higher secretion and differentiation functions than suspended counterparts, and, thus, invitro cryopreservation of MSC spheroids is an indispensable technology to bridge the spatiotemporal gaps between spheroid generation and application. Traditional cryopreservation methods are inapplicable for spheroid due to severe thermal stress, toxic cryoprotectants, and ice formation. Here, we constructed and preserved human MSC (hMSC) spheroids via deep supercooling (DSC). Spheroids were DSC preserved at -12°C without ice formation for 7days, with higher cell viability, energy level, and chondrogenic differentiation capacity than suspended hMSCs. hMSCs embedded in spheroids have close cell-cell interactions via N-cadherin to activate the AKT-cytochrome c-caspase anti-apoptotic cascade during DSC preservation. Finally, preserved hMSC spheroids were capable of chondrogenic differentiation and can be co-delivered with collagen to treat rat cartilage defects invivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.