Abstract

The maize leaf diseases create severe yield reductions and critical problems. The maize leaf disease should be discovered early, perfectly identified, and precisely diagnosed to make greater yield. This work studies three main leaf diseases: common rust, blight, and grey leaf spot. This approach involves pre-processing, including sampling and labelling, while ensuring class balance and preventing overfitting via the SMOTE algorithm. The maize leaf dataset with augmentation was used to classify these diseases using several deep-learning pre-trained networks, including VGG16, Resnet34, Resnet50, and SqueezeNet. The model was evaluated using a maize leaf dataset that included various leaf classes, mini-batch sizes, and input sizes. Performance measures, recall, precision, accuracy, F1-score, and confusion matrix were computed for each network. The SqueezeNet learning model produces an accuracy of 97% in classifying four different classes of plant leaf datasets. Comparatively, the SqueezeNet learning model has improved accuracy by 2–5% and reduced the mean square error by 4–11% over VGG16, Resnet34, and Resnet50 deep learning models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.