Abstract

With the increasing popularity of social media and smart devices, the face as one of the key biometrics becomes vital for person identification. Among those face recognition algorithms, video-based face recognition methods could make use of both temporal and spatial information just as humans do to achieve better classification performance. However, they cannot identify individuals when certain key facial areas, such as eyes or nose, are disguised by heavy makeup or rubber/digital masks. To this end, we propose a novel deep spiking neural network architecture in this paper. It takes dynamic facial movements, the facial muscle changes induced by speaking or other activities, as the sole input. An event-driven continuous spike-timing-dependent plasticity learning rule with adaptive thresholding is applied to train the synaptic weights. The experiments on our proposed video-based disguise face database (MakeFace DB) demonstrate that the proposed learning method performs very well, i.e., it achieves from 95% to 100% correct classification rates under various realistic experimental scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.