Abstract

Recently, there has been growing interest in deep spectral methods for image localization and segmentation, influenced by traditional spectral segmentation approaches. These methods reframe the image decomposition process as a graph partitioning task by extracting features using self-supervised learning and utilizing the Laplacian of the affinity matrix to obtain eigensegments. However, instance segmentation has received less attention than other tasks within the context of deep spectral methods. This paper addresses that not all channels of the feature map extracted from a self-supervised backbone contain sufficient information for instance segmentation purposes. Some channels are noisy and hinder the accuracy of the task. To overcome this issue, this paper proposes two channel reduction modules, Noise Channel Reduction (NCR) and Deviation-based Channel Reduction (DCR). The NCR retains channels with lower entropy, as they are less likely to be noisy, while DCR prunes channels with low standard deviation, as they lack sufficient information for effective instance segmentation. Furthermore, the paper demonstrates that the dot product, commonly used in deep spectral methods, is not suitable for instance segmentation due to its sensitivity to feature map values, potentially leading to incorrect instance segments. A novel similarity metric called Bray-curtis over Chebyshev (BoC) is proposed to address this issue. This metric considers the distribution of features in addition to their values, providing a more robust similarity measure for instance segmentation. Quantitative and qualitative results on the Youtube-VIS 2019 and OVIS datasets highlight the improvements achieved by the proposed channel reduction methods and using BoC instead of the conventional dot product for creating the affinity matrix. These improvements regarding mean Intersection over Union (mIoU) and extracted instance segments are observed, demonstrating enhanced instance segmentation performance. The code is available on: https://github.com/farnooshar/SpecUnIIS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.