Abstract

Multiple domain fusion has been widely used for urban anomalies forecasting problem, as urban anomalies such as traffic accidents or illegal assembly are usually caused by many complex factors and they would affect many fields. Although many efforts have been devoted to fusing multiple datasets for anomalies detection, most of the work is to extract the spatio-temporal features one by one from multiple datasets and then fuse to get the result or anomaly score. However, the correlation between data from multiple domains at each moment is ignored, which is especially important when detecting anomalies by analyzing the impacts from multiple datasets. In this paper, we propose a novel end-to-end deep learning based framework, namely deep spatio-temporal multiple domain fusion network to collect the impacts of urban anomalies on multiple datasets and detect anomalies in each region of the city at next time interval in turn. We formulate the problem on a weighted graph and obtain spatiotemporal features with adaptive graph convolution and temporal convolution. In addition, a cross-domain convolution network is applied to fully obtain connection between multiple domains. We evaluate our method with real-world dataset collected in New York City and experiments on our model show the advantages nearly 10% beyond the state-of-the-art urban anomalies detection methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call