Abstract
The model is difficult to establish because the principle of the locomotive adhesion process is complex. This paper presents a data-driven adhesion status fault diagnosis method based on deep learning theory. The adhesion coefficient and creep speed of a locomotive constitute the characteristic vector. The sparse autoencoder unsupervised learning network studies the input vector, and the single-layer network is superimposed to form a deep neural network. Finally, a small amount of labeled data is used to fine-tune training the entire deep neural network, and the locomotive adhesion state fault diagnosis model is established. Experimental results show that the proposed method can achieve a 99.3% locomotive adhesion state diagnosis accuracy and satisfy actual engineering monitoring requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.