Abstract
The concurrent preservation of morphological, structural, and genomic attributes within biological samples is paramount for comprehensive insights into biological phenomena and disease mechanisms. However, current preservation methodologies (e.g., cryopreservation, chemical reagent fixation, and bioplasticization) exhibit limitations in simultaneously achieving these critical combined goals. To address this gap, inspired by natural fossilization, here we propose "deep silicification," a room temperature technology that eliminates fixation requirements and overcomes the cold chain problem. By harnessing the synergy between ethanol and dimethyl sulfoxide, deep silicification significantly enhances silica penetration and accumulation within bioorganisms, thereby reinforcing structural integrity. This versatile and cost-effective approach demonstrates remarkable efficacy in preserving organismal morphology across various scales. Accelerated aging experiments underscore a 4,723-fold enhancement in genomic information storage over millennia, with whole-genome sequencing confirming nearly 100% fidelity. With its simplicity and reliability, "deep silicification" represents a paradigm shift in biological sample storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.