Abstract
Person re-identification (re-ID), which aims at spotting a person of interest across multiple camera views, has gained more and more attention in computer vision community. In this paper, we propose a novel deep Siamese architecture based on convolutional neural network (CNN) and multi-level similarity perception. According to the distinct characteristics of diverse feature maps, we effectively apply different similarity constraints to both low-level and high-level feature maps, during training stage. Therefore, our network can efficiently learn discriminative feature representations at different levels, which significantly improves the re-ID performance. Besides, our framework has two additional benefits. Firstly, classification constraints can be easily incorporated into the framework, forming a unified multi-task network with similarity constraints. Secondly, as similarity comparable information has been encoded in the network's learning parameters via back-propagation, pairwise input is not necessary at test time. That means we can extract features of each gallery image and build index in an off-line manner, which is essential for large-scale real-world applications. Experimental results on multiple challenging benchmarks demonstrate that our method achieves splendid performance compared with the current state-of-the-art approaches.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.