Abstract

Segmentation in 3-D scans is playing an increasingly important role in current clinical practice supporting diagnosis, tissue quantification, or treatment planning. The current 3-D approaches based on convolutional neural networks usually suffer from at least three main issues caused predominantly by implementation constraints-first, they require resizing the volume to the lower-resolutional reference dimensions, and second, the capacity of such approaches is very limited due to memory restrictions, and third, all slices of volumes have to be available at any given training or testing time. We address these problems by a U-Net-like architecture consisting of bidirectional convolutional long short-term memory and convolutional, pooling, upsampling, and concatenation layers enclosed into time-distributed wrappers. Our network can either process the full volumes in a sequential manner or segment slabs of slices on demand. We demonstrate performance of our architecture on vertebrae and liver segmentation tasks in 3-D computed tomography scans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.