Abstract

BackgroundMilling yield and eating quality are two important grain quality traits in rice. To identify the genes involved in these two traits, we performed a deep transcriptional analysis of developing seeds using both massively parallel signature sequencing (MPSS) and sequencing-by-synthesis (SBS). Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control).ResultsThe transcriptomes revealed by MPSS and SBS had a high correlation co-efficient (0.81 to 0.90), and about 70% of the transcripts were commonly identified in both types of the libraries. SBS, however, identified 30% more transcripts than MPSS. Among the highly expressed genes in Cypress and Ilpumbyeo, over 100 conserved cis regulatory elements were identified. Numerous specifically expressed transcription factor (TF) genes were identified in Cypress (282), LaGrue (312), Ilpumbyeo (363), YR15965 (260), and Nipponbare (357). Many key grain quality-related genes (i.e., genes involved in starch metabolism, aspartate amino acid metabolism, storage and allergenic protein synthesis, and seed maturation) that were expressed at high levels underwent alternative splicing and produced antisense transcripts either in Cypress or Ilpumbyeo. Further, a time course RT-PCR analysis confirmed a higher expression level of genes involved in starch metabolism such as those encoding ADP glucose pyrophosphorylase (AGPase) and granule bound starch synthase I (GBSS I) in Cypress than that in LaGrue during early seed development.ConclusionThis study represents the most comprehensive analysis of the developing seed transcriptome of rice available to date. Using two high throughput sequencing methods, we identified many differentially expressed genes that may affect milling yield or eating quality in rice. Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins. Some of the differentially expressed genes could be useful for the development of molecular markers if they are located in a known QTL region for milling yield or eating quality in the rice genome. Therefore, our comprehensive and deep survey of the developing seed transcriptome in five rice cultivars has provided a rich genomic resource for further elucidating the molecular basis of grain quality in rice.

Highlights

  • Milling yield and eating quality are two important grain quality traits in rice

  • We found that the important starch biosynthesis related genes encoding ADP glucose pyrophosphorylase (AGPase) (Os01g44220), 1,4-a-glucan branching enzyme (Os02g32660), limit dextrinase (Os04g08270), 1,4-a-glucan branching enzyme (Os06g51084), and a-amylase (Os09g29404) were up-regulated in Cypress compared to LaGrue and Nipponbare in six-days old developing seeds

  • Many of the identified genes are involved in the biosynthesis of starch, aspartate family amino acids, and storage proteins

Read more

Summary

Introduction

Milling yield and eating quality are two important grain quality traits in rice. Five MPSS and five SBS libraries were constructed from 6-day-old developing seeds of Cypress (high milling yield), LaGrue (low milling yield), Ilpumbyeo (high eating quality), YR15965 (low eating quality), and Nipponbare (control). Rice grain quality is assessed by its appearance and by its milling, cooking, eating, and nutritional quality [1,2,3]. Eating quality is negatively correlated with protein content, stickiness, and hardness of rice [10,11]. The main factors affecting both eating and cooking quality of rice are amylose content, gel consistency and gelatinization temperature [12,13,15,16]. Developing cultivars with high milling yield and eating quality have been the main objectives in rice breeding programs in the last few decades

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call