Abstract

BackgroundmicroRNAs (miRNAs) in fish have not been as extensively studied as those in mammals. The fish species Takifugu rubripes is an intensively studied model organism whose genome has been sequenced. The T. rubripes genome is approximately eight times smaller than the human genome, but has a similar repertoire of protein-coding genes. Therefore, it is useful for identifying non-coding genes, including miRNA genes. To identify miRNA expression patterns in different organs of T. rubripes and give fundamental information to aid understanding of miRNA populations in this species, we extracted small RNAs from tissues and performed deep sequencing analysis to profile T. rubripes miRNAs. These data will be of assistance in functional studies of miRNAs in T. rubripes.ResultsAfter analyzing a total of 139 million reads, we found miRNA species in nine tissues (fast and slow muscles, heart, eye, brain, intestine, liver, ovaries, and testes). We identified 1420 known miRNAs, many of which were strongly expressed in certain tissues with expression patterns similar to those described for other animals in previous reports. Most miRNAs were expressed in tissues other than the ovaries or testes. However, some miRNA families were highly abundant in the gonads, but expressed only at low levels in somatic tissue, suggesting specific function in germ cells. The most abundant isomiRs (miRNA variants) of many miRNAs had identical sequences in the 5′ region. However, isomiRs of some miRNAs, including fru-miR-462-5p, varied in the 5′ region in some tissues, suggesting that they may target different mRNA transcripts. Longer small RNAs (26–31 nt), which were abundant in the gonads, may be putative piRNAs because of their length and their origin from repetitive elements. Additionally, our data include possible novel classes of small RNAs.ConclusionsWe elucidated miRNA expression patterns in various organs of T. rubripes. Most miRNA sequences are conserved in vertebrates, indicating that the basic functions of vertebrate miRNAs share a common evolution. Some miRNA species exhibit different distributions of isomiRs between tissues, suggesting that they have a broad range of functions.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-015-1622-1) contains supplementary material, which is available to authorized users.

Highlights

  • MicroRNAs in fish have not been as extensively studied as those in mammals

  • Sequencing of T. rubripes small RNAs We obtained a total of 138,786,706 reads of 35 nucleotides, with additional exact barcode sequences

  • We investigated the proportion of miRNAs in small RNAs of 18–25 nt in each tissue

Read more

Summary

Introduction

MicroRNAs (miRNAs) in fish have not been as extensively studied as those in mammals. The fish species Takifugu rubripes is an intensively studied model organism whose genome has been sequenced. The T. rubripes genome is approximately eight times smaller than the human genome, but has a similar repertoire of protein-coding genes. It is useful for identifying non-coding genes, including miRNA genes. The primiRNA is subsequently processed to a precursor miRNA (pre-miRNA) by a microprocessor called Drosha [3,4,5]. Studies of model organisms, such as small fish, provide convenient ways to understand how miRNAs function, which is often difficult in humans [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.