Abstract

Most existing model-based and learning-based image deblurring methods usually use synthetic blur-sharp training pairs to remove blur. However, these approaches do not perform well in real-world applications as the blur-sharp training pairs are difficult to be obtained and the blur in real-world scenarios is spatial-variant. In this paper, we propose a self-supervised learning-based image deblurring method that can deal with both uniform and spatial-variant blur distributions. Moreover, our method does not need for blur-sharp pairs for training. In our proposed method, we design the Deblurring Network (D-Net) and the Spatial Degradation Network (SD-Net). Specifically, the D-Net is designed for image deblurring while the SD-Net is used to simulate the spatial-variant degradation. Furthermore, the off-the-shelf pre-trained model is employed as the prior of our model, which facilitates image deblurring. Meanwhile, we design a recursive optimization strategy to accelerate the convergence of the model. Extensive experiments demonstrate that our proposed model achieves favorable performance against existing image deblurring methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.