Abstract
Deep graph clustering is an unsupervised learning task that divides nodes in a graph into disjoint regions with the help of graph auto-encoders. Currently, such methods have several problems, as follows. (1) The deep graph clustering method does not effectively utilize the generated pseudo-labels, resulting in sub-optimal model training results. (2) Each cluster has a different confidence level, which affects the reliability of the pseudo-label. To address these problems, we propose a Deep Self-supervised Attribute Graph Clustering model (DSAGC) to fully leverage the information of the data itself. We divide the proposed model into two parts: an upstream model and a downstream model. In the upstream model, we use the pseudo-label information generated by spectral clustering to form a new high-confidence distribution with which to optimize the model for a higher performance. We also propose a new reliable sample selection mechanism to obtain more reliable samples for downstream tasks. In the downstream model, we only use the reliable samples and the pseudo-label for the semi-supervised classification task without the true label. We compare the proposed method with 17 related methods on four publicly available citation network datasets, and the proposed method generally outperforms most existing methods in three performance metrics. By conducting a large number of ablative experiments, we validate the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.