Abstract

Context. In the laboratory, hydrogen peroxide (HOOH) was proven to be an intermediate product in the solid-state reaction scheme that leads to the formation of water on icy dust grains. When HOOH desorbs from the icy grains, it can be detected in the gas phase. In combination with water detections, it may provide additional information on the water reaction network. Hydrogen peroxide has previously been found toward ρ Oph A. However, further searches for this molecule in other sources failed. Hydrogen peroxide plays a fundamental role in the understanding of solid-state water formation and the overall water reservoir in young stellar objects (YSOs). Without further HOOH detections, it is difficult to assess and develop suitable chemical models that properly take into account the formation of water on icy surfaces. Aims. The objective of this work is to identify HOOH in YSOs and thereby constrain the grain surface water formation hypothesis. Methods. Using an astrochemical model based on previous work in combination with a physical model of YSOs, the sources R CrA-IRS 5A, NGC C1333-IRAS 2A, L1551-IRS 5, and L1544 were identified as suitable candidates for an HOOH detection. Long integration times on the APEX 12 m and IRAM 30 m telescopes were applied to search for HOOH signatures in these sources. Results. None of the four sources under investigation showed convincing spectral signatures of HOOH. The upper limit for HOOH abundance based on the noise level at the frequency positions of this molecule for the source R CrA-IRS 5A was close to the predicted value. For NGC 1333-IRAS 2A, L1544, and L1551-IRS 5, the model overestimated the hydrogen peroxide abundances. Conclusions. HOOH remains an elusive molecule. With only one secure cosmic HOOH source detected so far, namely ρ Oph A, the chemical model parameters for this molecule cannot be sufficiently well determined or confirmed in existing models. Possible reasons for the nondetections of HOOH are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.