Abstract
Deep-sea environments face increasing pressure from anthropogenic exploitation and climate change, but remain poorly studied. Hence, there is an urgent need to compile quantitative baseline data on faunal assemblages, and improve our understanding of the processes that drive faunal assemblage composition in deep-sea environments. The Southwest Atlantic deep sea is an undersampled region that hosts unique and globally important faunal assemblages. To date, our knowledge of these assemblages has been predominantly based on ex situ analysis of scientific trawl and fisheries bycatch specimens, limiting our ability to characterise faunal assemblages. Incidental sampling and fisheries bycatch data indicate that the Falkland Islands deep sea hosts a diversity of fauna, including vulnerable marine ecosystem (VME) indicator taxa. To increase our knowledge of Southwest Atlantic deep-sea epibenthic megafauna assemblages, benthic imagery, comprising 696 images collected along the upper slope (1070–1880 m) of the Falkland Islands conservation zones (FCZs) in 2014, was annotated, with epibenthic megafauna and substrata recorded. A suite of terrain derivatives were also calculated from GEBCO bathymetry and oceanographic variables extracted from global models. The environmental conditions coincident with annotated image locations were calculated, and multivariate analysis was undertaken using 288 ‘sample’ images to characterize faunal assemblages and discern their environmental drivers. Three main faunal assemblages representing two different sea pen and cup coral assemblages, and an assemblage characterised by sponges and Stylasteridae, were identified. Subvariants driven by varying dominance of sponges, Stylasteridae, and the stony coral, Bathelia candida, were also observed. The fauna observed are consistent with that recorded for the wider southern Patagonian Slope. Several faunal assemblages had attributes of VMEs. Faunal assemblages appear to be influenced by the interaction between topography and the Falkland Current, which, in turn, likely influences substrata and food availability. Our quantitative analyses provide a baseline for the southern Patagonian shelf/slope environment of the FCZs, against which to compare other assemblages and assess environmental drivers and anthropogenic impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.