Abstract
This paper introduces a novel Synthetic Aperture Radar (SAR) specific deep learning framework for complex-valued SAR images. The conventional deep convolutional neural networks based methods usually take the amplitude information of single-polarization SAR images as the input to learn hierarchical spatial features automatically, which may have difficulties in discriminating objects with similar texture but discriminative scattering patterns. Our novel deep learning framework, Deep SAR-Net, takes complex-valued SAR images into consideration to learn both spatial texture information and backscattering patterns of objects on the ground. On the one hand, we transfer the detected SAR images pre-trained layers to extract spatial features from intensity images. On the other hand, we dig into the Fourier domain to learn physical properties of the objects by joint time-frequency analysis on complex-valued SAR images. We evaluate the effectiveness of Deep SAR-Net on three complex-valued SAR datasets from Sentinel-1 and TerraSAR-X satellite and demonstrate how it works better than conventional deep CNNs, especially on man-made objects classes. The proposed datasets and the trained Deep SAR-Net model with all codes are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.