Abstract

Carbon (C) sequestration in soils is a promising CO2 removal approach. So far, the focus has been on how to increase the content of soil organic C (SOC), while the management soil inorganic C (SIC), i.e. carbonate minerals, has received little attention, because SIC is thought to be much less involved in biotic C cycling than SOC. However, in principle SIC management potentially provides a long-term solution, with a much greater capacity for C sequestration than SOC. The forgotten link is the dissolved inorganic carbon (DIC), i.e. CO2 species dissolved in soil solution, and its fate throughout the unsaturated zone (USZ). The return of CO2 respired by deep roots to the atmosphere, either directly through CO2 degassing or indirectly through DIC leaching, may not necessarily take place over decades or centuries. CO2 diffusion decreases sharply with depth due to reduced porosity of the subsoil and more water-filled pores. The downward water percolation rate is often only a few centimeters per year, and the large amount of respired CO2 compared to the leached DIC results in a relatively small amount of CO2 being transferred to the groundwater. Therefore, respired CO2 at deeper soil depth can be defined as a hitherto unknown ecosystem service of deep-rooted plants i.e. providing a net C sink as inorganic C in the USZ. A conservative estimation suggests a C sink as SIC of at least 80 kg C ha−1 y−1, comparable to reported annual C sequestration as SOC in temperate grasslands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call