Abstract

Ride dispatching is a central operation task on a ride-sharing platform to continuously match drivers to trip-requesting passengers. In this work, we model the ride dispatching problem as a Markov Decision Process and propose learning solutions based on deep Q-networks with action search to optimize the dispatching policy for drivers on ride-sharing platforms. We train and evaluate dispatching agents for this challenging decision task using real-world spatio-temporal trip data from the DiDi ride-sharing platform. A large-scale dispatching system typically supports many geographical locations with diverse demand-supply settings. To increase learning adaptability and efficiency, we propose a new transfer learning method Correlated Feature Progressive Transfer, along with two existing methods, enabling knowledge transfer in both spatial and temporal spaces. Through an extensive set of experiments, we demonstrate the learning and optimization capabilities of our deep reinforcement learning algorithms. We further show that dispatching policies learned by transferring knowledge from a source city to target cities or across temporal space within the same city significantly outperform those without transfer learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.