Abstract

Deep reinforcement learning algorithms such as Deep Q-Networks have successfully been used to construct a strong agent for Atari games by only performing direct evaluation of the current state and actions. This is in stark contrast to the algorithms for traditional board games such as Chess or Go, where a look-ahead search mechanism is indispensable to build a strong agent. In this paper, we present a novel deep reinforcement learning architecture that can both effectively and efficiently use information on future states in video games. First, we demonstrate that such information is indeed quite useful in deep reinforcement learning by using exact state transition information obtained from the emulator. We then propose a method that predicts future states using Long Short Term Memory (LSTM), such that the agent can look ahead without the emulator. In this work, we applied our method to the asynchronous advantage actor-critic (A3C) architecture. The experimental results show that our proposed method with predicted future states substantially outperforms the vanilla A3C in several Atari games.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.