Abstract

Soft magnetic miniature robots (SMMRs) have potential biomedical applications due to their flexible size and mobility to access confined environments. However, navigating the robot to a goal site with precise control performance and high repeatability in unstructured environments, especially in flow rate conditions, still remains a challenge. In this study, drawing inspiration from the control requirements of drug delivery and release to the goal lesion site in the presence of dynamic biofluids, we propose a flow rate rejection control strategy based on a deep reinforcement learning (DRL) framework to actuate an SMMR to achieve goal-reaching and hovering in fluidic tubes. To this end, an SMMR is first fabricated, which can be operated by an external magnetic field to realize its desired functionalities. Subsequently, a simulator is constructed based on neural networks to map the relationship between the applied magnetic field and robot locomotion states. With minimal prior knowledge about the environment and dynamics, a gated recurrent unit (GRU)-based DRL algorithm is formulated by considering the designed history state-action and estimated flow rates. In addition, the randomization technique is applied during training to distill the general control policy for the physical SMMR. The results of numerical simulations and experiments are illustrated to demonstrate the robustness and efficacy of the presented control framework. Finally, in-depth analyses and discussions indicate the potentiality of DRL for soft magnetic robots in biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.