Abstract

Accurate and automated lymph node segmentation is pivotal for quantitatively accessing disease progression and potential therapeutics. The complex variation of lymph node morphology and the difficulty of acquiring voxel-wise manual annotations make lymph node segmentation a challenging task. Since the Response Evaluation Criteria in Solid Tumors (RECIST) annotation, which indicates the location, length, and width of a lymph node, is commonly available in hospital data archives, we advocate to use RECIST annotations as the supervision, and thus formulate this segmentation task into a weakly-supervised learning problem. In this paper, we propose a deep reinforcement learning-based lymph node segmentation (DRL-LNS) model. Based on RECIST annotations, we segment RECIST-slices in an unsupervised way to produce pseudo ground truths, which are then used to train U-Net as a segmentation network. Next, we train a DRL model, in which the segmentation network interacts with the policy network to optimize the lymph node bounding boxes and segmentation results simultaneously. The proposed DRL-LNS model was evaluated against three widely used image segmentation networks on a public thoracoabdominal Computed Tomography (CT) dataset that contains 984 3D lymph nodes, and achieves the mean Dice similarity coefficient (DSC) of 77.17% and the mean Intersection over Union (IoU) of 64.78% in the four-fold cross-validation. Our results suggest that the DRL-based bounding box prediction strategy outperforms the label propagation strategy and the proposed DRL-LNS model is able to achieve the state-of-the-art performance on this weakly-supervised lymph node segmentation task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.