Abstract

Human activity localization aims at recognizing contents and detecting locations of activities in video sequences. With an increasing number of untrimmed video data, traditional activity localization methods always suffer from two major limitations. First, detailed annotations are needed in most existing methods, i.e., bounding-box annotations in every frame, which are both expensive and time consuming. Second, the search space is too large for 3D activity localization, which requires generating a large number of proposals. In this paper, we propose a unified deep Q-network with weak reward and weak loss (DWRLQN) to address the two problems. Certain weak knowledge and weak constraints involving the temporal dynamics of human activity are incorporated into a deep reinforcement learning framework under sparse spatial supervision, where we assume that only a portion of frames are annotated in each video sequence. Experiments on UCF-Sports, UCF-101 and sub-JHMDB demonstrate that our proposed model achieves promising performance by only utilizing a very small number of proposals. More importantly, our DWRLQN trained with partial annotations and weak information even outperforms fully supervised methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call