Abstract
Heterogeneous cellular networks can offload the mobile traffic and reduce the deployment costs, which have been considered to be a promising technique in the next-generation wireless network. Due to the non-convex and combinatorial characteristics, it is challenging to obtain an optimal strategy for the joint user association and resource allocation issue. In this paper, a reinforcement learning (RL) approach is proposed to achieve the maximum long-term overall network utility while guaranteeing the quality of service requirements of user equipments (UEs) in the downlink of heterogeneous cellular networks. A distributed optimization method based on multi-agent RL is developed. Moreover, to solve the computationally expensive problem with the large action space, multi-agent deep RL method is proposed. Specifically, the state, action and reward function are defined for UEs, and dueling double deep Q-network (D3QN) strategy is introduced to obtain the nearly optimal policy. Through message passing, the distributed UEs can obtain the global state space with a small communication overhead. With the double-Q strategy and dueling architecture, D3QN can rapidly converge to a subgame perfect Nash equilibrium. Simulation results demonstrate that D3QN achieves the better performance than other RL approaches in solving large-scale learning problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.