Abstract

In this paper, we investigate the problem of robot swarm control in 5G mission-critical robotic applications, i.e., in an automated grid-based warehouse scenario. Such application requires both the kinematic energy consumption of the robots and the ultra-reliable and low latency communication (URLLC) between the central controller and the robot swarm to be jointly optimized in real-time. The problem is formulated as a nonconvex optimization problem since the achievable rate and decoding error probability with short block-length are neither convex nor concave in bandwidth and transmit power. We propose a deep reinforcement learning (DRL) based approach that employs the deep deterministic policy gradient (DDPG) method and convolutional neural network (CNN) to achieve a stationary optimal control policy that consists of a number of continuous and discrete actions. Numerical results show that our proposed multi-agent DDPG algorithm achieves a performance close to the optimal baseline and outperforms the single-agent DDPG in terms of decoding error probability and energy efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.