Abstract

Processing big data generated in large Internet of Things (IoT) networks is challenging current techniques. To date, a lot of network clustering approaches have been proposed to improve the performance of data collection in IoT. However, most of them focus on partitioning networks with static topologies, and thus they are not optimal in handling the case with moving objects in the networks. Moreover, to the best of our knowledge, none of them has ever considered the performance of computing in edge servers. To solve these problems, we propose a highly efficient IoT network dynamic clustering solution in edge computing using deep reinforcement learning (DRL). Our approach can both fulfill the data communication requirements from IoT networks and load-balancing requirements from edge servers, and thus provide a great opportunity for future high performance IoT data analytics. We implement our approach using a Deep Q-learning Network (DQN) model, and our preliminary experimental results show that the DQN solution can achieve higher scores in cluster partitioning compared with the current static benchmark solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.