Abstract

In this research, an intelligent control architecture for an experimental Unmanned Aerial Vehicle (UAV) bearing unconventional inverted V-tail design, is presented. To handle UAV’s inherent control complexities, while keeping them computationally acceptable, a variant of distinct Deep Reinforcement Learning (DRL) algorithm, namely Deep Deterministic Policy Gradient (DDPG) is proposed. Conventional DDPG algorithm after being modified in its learning architecture becomes capable of intelligently handling the continuous state and control space domains besides controlling the platform in its entire flight regime. Nonlinear simulations were then performed to analyze UAV performance under different environmental and launch conditions. The effectiveness of the proposed strategy is further demonstrated by comparing the results with the linear controller for the same UAV whose feedback loop gains are optimized by employing technique of optimal control theory. Results indicate the significance of the proposed control architecture and its inherent capability to adapt dynamically to the changing environment, thereby making it of significant utility to airborne UAV applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.