Abstract

Dynamic events and transportation constraints would significantly affect the full utilization of resources and the reduction of production costs in distributed job shops. Therefore, in this paper, a deep reinforcement learning algorithm (DRL)-based real-time scheduling method is developed to minimize the mean tardiness of the dynamic distributed job shop scheduling problem with transfers (DDJSPT) considering random job arrivals. Firstly, the proposed DDJSPT is modeled as a Markov decision process (MDP). Then, ten problem-oriented state features covering four aspects of factories, machines, jobs, and operations are elaborately extracted from the dynamic distributed job shop. After that, eleven composite rules considering the uniqueness of DDJSPT are constructed as a pool of actions to intelligently prioritize unfinished jobs and allocate the selected job to an appropriate factory. Moreover, a justified reward function adapted from the objective is designed for better convergence of DRLs. Subsequently, five DRLs are employed to address the DDJSPT, encompassing deep Q-network (DQN), double DQN (DDQN), dueling DQN (DlDQN), trust region policy optimization (TRPO), and proximal policy optimization (PPO). Finally, grounded in numerical comparison experiments under 243 production configurations of the DDJSPT, the effectiveness and generalization of DRL-based scheduling methods are credibly verified and confirmed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call